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Abstract 

The zero-point vibrational average of molecular form 
factors for diatomic molecules is treated as an observ- 
able from X-ray diffraction measurements. This model 
allows exploration of the influence of a single internal 
vibration on FBr~gg(S ). It is found that when anhar- 
monic terms in the atomic vibration are included, then 
deconvolution to the static form factor, F(S;Re) is 
achieved. Neglect of the anharmonic terms gives rise to 
spurious sharp dipole features in the heavy-pseudo- 
atom charge densities, but not to the H-pseudoatom 
charge density. Non-rigid terms in the pseudoatoms are 
virtually negligible except for H where the non-rigid 
effect is as large as 6% in the hydrogen quadrupole 
scattering factor. The diatomic molecules studied 
include Nz(t~+), CO(1E+), BF(~27 +) and FH(~27+). 

Introduction 

The elastic X-ray scattering intensity for a molecule or 
crystal with P nuclei at some position Q (a 3P-dimen- 
sional vector) and with a one-electron density function 
p(r; Q) is 

I~R(S;Q) = IF(S;Q)I z, (1) 
where 

F(S; Q) -- f p(r; Q) exp (is. Q) d3r, (2) 

and S is parallel to the Bragg vector and of magnitude 
47r sin 0/L (The Thomson cross-section and 
polarization factor are incorporated into I~R.) The 
fundamental relations (1) and (2) are valid for 
kinematic scattering and for an incident X-ray fre- 
quency far above absorption frequencies of the target 
(Waller & Hartree, 1929). They also apply to a time 
scale short for a nuclear vibration. For X-ray frequen- 
cies large compared with nuclear vibrations, the 
observed intensity is a canonical ensemble average over 
the states for Q, 

Iav(S) = ~ W, fzn(Q) I~xR(S;Q)X,(Q)d3eQ, (3) 
n 

where IV, is the Boltzmann weight factor for vibra- 
tional state n, with vibrational wavefunction x,(Q). In 

general (3) contains inelastically scattered intensities 
due to vibrons in the molecule or to phonons in the 
lattice. In crystallography the contribution is often 
called thermal diffuse scattering. For most X-ray 
diffraction experiments (v 0 ~_ 3 x 10 Is s -1) these 
phonon-induced, inelastically scattered components 
cannot be measured by X-ray monochromators or 
other energy analyzers since, at the least, an energy or 
frequency resolution of 10 -5 (more appropriately 10 -7 ) 
is required. Moreover, (3) cannot be simply related to a 
vibrational average of the electron charge-density 
function in the molecule or crystal. 

Born (1942-1943) carried out a detailed analysis of 
(3) with harmonic oscillator functions for z,(Q) and 
rigid pseudoatoms (essentially atomic form factors) for 
an explicit representation ofF(S; Q). In this model, 

co 

Iav= Z Z Z ,fp{[S* ~'pp, S/(mpmp,)l/2]k/kl},7*, (4) 
p p'  k=O 

where 
~ =  L(S;Q°)exp(iS.Q°)exp(-½s * ~'~s) (5) 

a n d  ,.~pp, is the Born (1942-1943) scattering matrix 
that couples atom p to atom p'. In (5) ~"p is the tensor 
for the mean-square amplitudes of motion for atom p, 
fp(S; Q0) is the generalized X-ray scattering factor for 
pseudoatom p and Q0 is the time-average position for 
atom p. Note that (5) is the usual term for an atom in a 
structure factor equation. Born then shows that in a 
crystal for which yon Laue interference terms are 
dominant, the k = 0 term in (4) is the major contributor 
to lay when S = 2nil, and H is the usual Bragg vector 
in terms of Miller indices. The k = 1 term can also peak 
under the Bragg intensity (lay for k = 0), but is rather 
smaller for small values of IS I. Each k term in (4) is 
often associated with k-phonon scattering. The Born 
model gives us a theoretical foundation for Debye's 
original structure-factor formulation (Debye, 1930). 
For crystal structure analysis, lay in (4) truncated at k 
= 0, is usually invoked and is often called the Bragg 
intensity, 

IBrass(S) = IF.rags(S)l 2, (6) 
where 

F~ragg(S ) = Z ,~r-o (7) 
P 

0567-7394/79/030476-06501.00 © 1979 International Union of Crystallography 



JOEL EPSTEIN AND ROBERT F. STEWART 477 

and J -p  is given by (5). It is not at all clear that (6) is 
adequate for charge-density analysis from real X-ray 
diffraction data. 

Assuming harmonic motion and working back- 
wards from (7) and (6) to the original formulation of 
vibrational averaging for an ensemble, we then discover 
that for (6) (Stewart, 1977), 

/Brags(S) = 1~-~. W,(Zn(Q) F(S;Q)xn(Q))I z, (8) 

where ,~n(Q) are for 3P harmonic oscillators and 
F(S; Q) is based on rigid pseudoatoms. Equation (8) is 
a curious result which is hard to understand on physical 
grounds. But (8) does show that within the Born model, 
/Brags(S) is related to the Boltzmann weighted vibra- 
tional average of the charge-density function in a simple 
way. We do not know if (8) is applicable to the general 
adiabatic case where F is given by (2) and X,(Q) are the 
correct phonon wavefunctions (always anharmonic) for 
a lattice. 

For the case where the temperature goes to zero, 

Iav(S) = (Zo(Q) IxR(s; Q) xo(Q)). 

B y completeness of Xn (Q), 

(9) 

Iav(S) = ~ (x0(Q) F*(S; Q) x,,(Q)) 
n 

x (zn(Q) F(S; Q) Z0(Q)). 

For n = 0, 

and for n 4: 0, 

/Brags(S) = I (Z0 FX0)I 2, 

(10) 

(11) 

ITDs(S) = Z I(XoFX,,) 12. (12) 
n¢0 

For the low-temperature result, it seems to be clear that 
I~rasg is just the square of the zero-point vibrational 
average of the molecular form factor or crystal 
structure factor. To the extent that (11) is an observ- 
able, there is some interest in a study of/Brags(S; T--' 0). 

In the present paper we take a pedagogical approach. 
We imagine that (11) is indeed an observable and more- 
over that 

F, ragg(S;T--"O)= (X,o(Q)F(S;Q) Zo(Q)) (13) 

can be determined (both phases and amplitude). We 
choose to isolate the problem to a single vibration, so 
that a model which fundamentally violates the uncer- 
tainty principle is invoked. A diatomic molecule is 
assumed to be oriented with one degree of vibrational 
freedom. The other two directions of vibrational motion 
are, thought-wise, constrained to a vanishingly small 
amplitude of motion. We use this as a specialized model 
for (13) and seek to understand the influence of the 
anharmonic character of this single vibration on 
F(S;R) and the non-rigidity of pseudoatoms in res- 
ponse to the vibration. 

The pseudoatom model for diatomies 

Generalized X-ray scattering factors for the pseudo- 
atoms can be determined directly from the diatomic 
molecular form factor Fmol(S;R ) at several values of R. 
These functions are small, finite multipole expansions 
about each nucleus. For a specified expansion length 
about each center, the radial functions can be uniquely 
determined from the best mean-square fit to Fmo~(S;R ) 
(Stewart, Bentley & Goodman, 1975). In previous 
work (Bentley & Stewart, 1975), it was found that a 
[212] expansion reproduced I~R(S;R) with a relative 
error no larger than 4 x 10 -5 and that these six radial 
functions afforded a relative root-mean-square fit to 
Fmol(S;R) of 0.2%. For the present study we will use a 
[212] expansion. 

2 
FCmol(S;R)=exp(-iS.R/2) ~ iJ Pj(tl) fa,j(S;R) 

J=0 

2 
+ exp(iS.R/2) Y i t̀  Pk(rl) J't,,k(S;R), 

k=0 

(14) 

where r/is the direction cosine between S and R. Note 
in (14) that the bond midpoint is chosen as the phasing 
origin for Fmol(S;R ). The procedure is to calculate 
Fmo~(S;R) at several R 's  about R e from relatively 
accurate Pmol(r;R). The fa,j(S;R) and fb,k(S;R) are 
then determined from 

e(S) --- J IFmoi-FColl2d,f'2s, (15) 

by minimizing (15) for each S: 

O~,/Ofa,j=O, j = 0 ,  1 , 2  

and c0e/0fb,, = 0, k = 0, 1, 2. (16) 

Once the {fa(S;R)} and {fb(S;R)} are known, the 
Taylor expansions of {fa} about R e, 

+( Ofa'j] (R--Re) fa'l(S;R) = fa'j(S;Re) \ OR /Re 

l I ~2 fa,j 1 
+2k  OR 2 /Re (R-Re)2  +''" (17) 

and a similar expansion for the { f  t,} can be evaluated. 
The fa,g(S;Re) and fb,k(S;Re) define the rigid pseudo- 
atom and the deforming pseudoatoms are given by the 
partial derivative functions. In general we expect the 
derivative terms in (17) to be non-zero since the {fa} 
and {fb} satisfy a large number of static charge 
properties of Pmot(r;R ) at each R. In practice we found 
that first and second derivative terms were sufficient to 
give fa.g(S;R) and fo,k(g;R) t o  f o u r  o r  f ive  figure 
accuracy. Also, as might be expected, the (Ofa,o/OR)R e 
and (02fa,o/OR2)R ~ at large S become relatively small. 
The fa,o and f0,0 at large S are the Fourier-Bessel 
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components of the pseudoatom charge-density near 
their respective nuclei. These local features of the 
monopoles should deform least. 

A plot of fF.2(S;R) for the [212] fluorine pseudo- 
atom in BF is shown in Fig. 1. The quadrupole 
scattering-factor curves were chosen for AR = +0.4  
bohr (1 bohr = 0 .529177/k)  of R e. The corresponding 
charge-density components of the pseudoatom, for the 
three values of R, are shown in Fig. 2. In this case, 

pF,2(rF;R)  : (2:rc2) -1P2(COS 0 F) 

O O  

x f fF,2(S;R) j2(Srv) S 2 dS. 
0 

(18) 

Fig. 1 and the corresponding direct-space picture in 
Fig. 2 clearly show that pseudoatoms can deform in a 
dramatic way. The question to pursue is of  what con- 
sequence is this to the modeling of FB,as s given by (13)? 
Details on the computation of (18) and other Fourier 
transforms of {f=(S;R)} and {fb(S;R)} as well as 
actual tabulations of the generalized X-ray scattering 
factors will be published elsewhere (Epstein & Stewart, 
1979). 

The electronic and vibrational wavefunctions 

The diatomic molecules studied in this work are 
N2(X27+), CO(X2:+), BF(127 +) and FH(127+). In this 
series ,  the  r o o t - m e a n - s q u a r e  a m p l i t u d e  o f  v i b r a t i o n  
increases. The electronic wavefunctions are near 
Hartree-Fock quality and employ extensive basis sets 
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Fig. 1. [212] fluorine pseudoatom quadrupole scattering-factors 
from BF for different internuclear distances, R. Solid curve R = 
2.391, short dash R = 2.770, long dash R = 2.000 a.u. (1 a.u. = 
0.529177,4,). 

of Slater-type functions. These wavefunctions at several 
R values are published in the literature: N 2, Cade & 
Wahl (1974) and Cade, Sales & Wahl (1966); CO, 
Huo (1965); BF, McLean & Yoshimine (1976); FH, 
Cade & Huo (1967). The computation of molecular 
form factors was by procedures previously reported 
(Bentley & Stewart, 1973). The t f,,} and {ft,} at [212] 
expansion were determined by the methods of Stewart, 
Bentley & Goodman (1975). 

A vibrational potential function, U(R), was deter- 
mined from the total energy of the diatomic electronic 
wavefunctions cited above. We chose to expand U(R) 
to the cubic term only, 

l [d2U 1 l / d 3 U  1 
v ( R )  = i (R - + g ( R - R , ) ' .  

(19) 
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Fig. 2. The fluorine pseudoatom quadrupole electron-density 
functions from [212] fit to BF at R = 2.000, 2.391 and 2.770 
a.u. respectively. Contours in units of  0.01 e/(a.u.) 3. Solid curve 
positive, short dash negative [ 1 e/(a.u.) 3 = 6.75 e//k3]. 
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By treating the cubic term as a perturbation, the ground 
state vibrational wavefunction, to first order, 

z0(R) = ~00(R) + C, qh(R) + C 3 ~03(R), (20) 

where the ~0,(R) are harmonic oscillator wave- 
functions, ( ),2 

a R_ lHn[a(  R __Re) ] 
= v E"n! 

x exp [--a2(R -- Re)2~2]. (2 1) 

In (21) a 2 = [2(X22)] -~ and (X22) is the mean-square 
amplitude of vibration. H , (y )  is the Hermite poly- 
nomial of order n. The functions in (21) are an exact 
solution for the harmonic potential [(19) sans cubic 
term] if (aRe) -l  ,~ 1. The coefficients C~ and C 3 for the 
approximate anharmonic wavefunction X0 in (20) are 

_( v I  <Xpe>,,vh, 
C , =  \ d R 3  ] R .  

C 3 = ~ C r  
(22) 

In (22), # is the reduced mass and h is Planck's 
constant divided by 27r. The C1 and C 3 parameters are 
dimensionless. The vibrational parameters for X0 in (20) 
are given in Table 1. Note that the mean-square 
amplitudes of vibration are very small compared with 
values often encountered in X-ray crystal structure 
analysis. The (X~2) u2 vary from 0.03 for N 2 to 0.06 A 
for FH. Also note the approximate trend that the larger 
(X~2) u2, the larger the anharmonic coefficient C r 

Table 1. Vibrationalparameters 

x 102 (a.u.)* C l x 102 C 3 × 102 

N 2 5 .6125 4.9393 1.3443 
CO 6 .0099 4.9185 1.3386 
BF 7.5883 7.0979 1.9318 
F H  11.864 11.533 3 .1390 

* 1 a.u. = 0 .529177 A = 0 .529177 x 10 -1° m. 

The model for Fn,.gg (S) 

We consider the zero-point vibrational average of an 
'oriented' diatomic molecule. This requires evaluation 
of (13). For the study here, the model for Faragg(S ) 
includes non-rigid pseudoatoms and an anharmonic 
potential for the vibration. 

The diatomic molecular form-factor, F (S ;R)  is 
approximated with the [212] expansion, given by (14). 
The {fa(S;R)} and {fb(S;R)} are given by (17). Let U~ 
be the displacement of nucleus a from equilibrium and 
U b the corresponding displacement vector for nucleus b. 

The vibrational average (13) is then given explicitly, 

2 
Fmagg(S) = exp (--iS . Re/2) Y iJ Pj(tl) 

J=O 

× 1 oxp( s, u°)> 

2 
+ exp(iS.Re/2)  • ikpk(q) 

k=0 

. ~  ORH ],Re 
(23) 

The notation, ( f ( R ) ) ,  represents the average 
f x o ( R ) f ( R ) z o ( R ) R 2 d R ,  with x0(R) given by (20). 
The algebraic forms of ( (AR)"exp( iS .Ua))  and 
((AR)~exp(iS.Ub))  are given in Table 2. In general 
these functions are complex. Terms of order C 2 are not 
included in Table 2, since these terms are of the same 
order as inclusion of a quartic term in (19). In powers 
of X 2 ( 1 2 ) ,  the first anharmonic term appears as (X~12) 1/2 
and the first non-rigid term (n = 1) appears as (X22). 
For all the averages, the Debye-Waller- type function, 
exp ( - S  2 r/2(X22) t~), (or a corresponding function for 
center b) is a common factor. 

Table 2. Vibrational averages, ((AR) n exp (iS. Ua)) 
and ((AR)" exp (iS. Ub)) in terms o f  the Bragg vector 
and vibrational wavefunction parameters and atomic 

masses, m a and m o 

n ( ( A R )  n exp (iS. Ua)) or  ( ( A R ) "  exp (iS. Ut,)) 

0 exp [ - S  2 r/2(X~2) t2/21[ 1 - i (2C 1 S ~ ( X ] 2 )  '/2 ta 

- (2/3) 1/2 C3 S 3 r/3 (X~2) 3/2 t~)l 

1 (X212) 1/2 exp [-S 2 r/2(X22) t2/21 [-iS~(X~2) '/2 t o 
+ 2C,(1 - S 2 r/2(X22) t~) - (2/3) u2 C 3 S 2 r/2(X22)t 2 

x (3 - s ~ ~(x ,~)  t~)] 

2 (X22)  exp [ - S  2 r/2(X22) t f f2] ( 1 - 82/72(X22) ta 2 

- i { 2 C 1 S ) l ( X 2 2 ) u 2 t a ( 3  - S 2 r/2(X~2) ta 2) 

+ (2/3) 1/2 C a [ ( S t l ( X 2 2 )  1/2 ta) 5 - 7 ( S ~ l ( X 2 2 )  u2 ta) 3 

+ 6 S q ( X ~ 2 )  1/2 ta]} ) 

t a = m J ( m ~  + me); tb = - m a / ( m a  + too); i =  

r/is the direction cosine between S and R (the internuclear vector). 

The deeonvolution problem 

We now pose the following problem in a study of  the 
convolution approximation. It is assumed that (23) is 
an observable and we explore the question as to what 
extent {fa(S;Re)} and {fb(S;Re)} can be recovered 
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from (23) with a pseudoatom model. We define, 

F~rlaSgWs(S) = exp(-iS.Re/2) (exp (iS. Ua) ) 

2 

X Z iy ga,j(S)Pj(tl) 
j=o  

+ exp(iS.Re/2) (exp (iS.Ub)) 

2 
x ~. ikgb,k(S)Pk(rl). (24) 

k=0 

In (24) pseudoatom atom a, {g~ }, is assigned the vibra- 
tional parameters in (exp (iS. U~)) given in Table 2 and 
corresponding parameters are assigned to {gb}. In 
direct space, the first term is the convolution of the {ga } 
pseudoatom charge density onto the anharmonic nuc- 
lear distribution function, which is given by the Fourier 
transform of (exp iS. U~>. The second term in (24) is 
the corresponding convolution of the {gb} pseudoatom 
onto the nuclear distribution function for b. We form 
the mean-square function, 

played in Fig. 3 for N, C, O, B and both F pseudo- 
atoms respectively. In all cases the gg~(s) give a 
contracted dipole component of opposite planarity and 
larger magnitude than for the pseudoatom at R e. The 
gg~(s) from (26) contain components due to the 
coupling of monopole scattering-factors and the anhar- 
monic terms in FB~ags(S) from (23). The dominant 
contribution to the dipole function for pseudoatom a 
projected from FBragg(S ) into g~l (S) is 

fa, l (S ;Re) -  2to C,(XZ~2) '/2 S fa.o(S;Re). 
A similar term occurs for the projection of FBr,gg(S) 
into ~ gbj(S). The largest discrepancy between gH](S) 
and fp j (S;Re)  occurs where Sfa,o(S;Re) is a maxi- 
mum. Also shown in Fig. 3 are the gpj(S) for the 
'heavy' pseudoatoms. These form factors are negligibly 
different from fpj(S;Re). With inclusion of anhar- 
monie terms, deconvolution of the vibrationally- 
averaged dipole functions to the static case is accom- 

I 2 n  0.02 

8(S) -- f f IFBrass(S )-.b'Rlgld(K312Bragg~,,.,] dr/d~°s, (25) o.ol 
- -1  0 0 .00  

and for each S minimize 8(S) with respect to gad(S) -O.Ol 
and gb.k( S); -o.o2 

- 0 . 0 3  

Oe(S)/Og,,j=O, j = 0 ,  1, 2 -o.o4 

and Oe(S)/Ogb. k = 0, k = 0, 1, 2. (26) 

We may then compare {ga(S)} to {f,,(S;Re)} and o o 
{gb(S)} to {fb(S;Re)}. If the g's are close to the f ' s ,  
then a successful deconvolution of FBr~gg (S) to a static -~o.2 
charge, F(S; Re), has been accomplished. 

The solution to (26) has been divided into two 
categories. In the first case, C~ = C a = 0 in (24), so that 
only an harmonic motion is assumed for ~'R~gW (R3 In - - B r a g g  ~,'- '/- 

this case the g's from a solution to (26) are denoted 
H H go,j(S) and gb,k(S). The second set of solutions from 

(26) include the anharmonic terms in (24), and the 
'atom' scattering-factors are simply denoted as ga, j(S) 
and gb,k( S). 

Results 

It is useful to compare the {g~p (S)} and {gp(S)} with 
the {fp(S;Re)} multipole by multipole (p is a or b). 
The monopole scattering-factors gH o and gu,0 from N=, 
CO and BF differ from fp,o(S;Re) by less than two 
parts in one thousand. This is also the case for gS~v,0 and 
gF,0 in FH. For g~,0, however, the maximum difference 
is 2% at sin 0/2 = 0.04 A -~ and for ga,0, the maximum 
relative difference from fH,o(S;Re) is 0.16% at 0.28 
A -I in sin 8/2. 

In strong contrast to the monopoles, the g~.](S) for 
all the heavy pseudoatoms differ appreciably from 
fpj(S;Re). Plots of these scattering factors are dis- 

o.o r - :~ 
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Fig. 3. [2L2] dipole scattering factors for N, C, O, B, F and F from 
N 2, CO, BF and FH, respectively. Solid curve is fAj(S;Re), 
short dash is g~A j [S )  and long dash is gAj(S). 
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Fig. 4. [212] dipole and quadrupole scattering factors for H in HF 
as a function of sin 0/2 (A-~). Solid, short dash and long dash as 
described in Fig. 3. 
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plished. The dipole scattering-factors for the H pseudo- 
atom in FH have rather different behavior to the 
heavier pseudoatoms. A plot of - f . ,~(S;Re) ,  u --gH,l ( S) 
and - g . , ~ ( S )  is shown in Fig. 4. For this case, g H  
does not differ appreciably from fn,~(S;Re), but 
gn,l(S) does at ~0.5 /~-1 in sin 0/2. The apparent 
agreement between fn,1 and g~,l is presumably due to 
the cancellation of the anharmonic and non-rigid 
effects, both of which are neglected in the rigid 
harmonic model. Also note that the n gn,~ does not have 
an artificial sharp dipole as do the other pseudoatoms. 

The quadrupole scattering factors g~,2(S) for the 
heavy pseudoatoms are in much closer agreement with 
fp,2(S;Re) than was found for the comparison of dipole 
scattering factors. The lighter atom typically has 
g~2(S) > fp.2(S;Re) at the maximum difference, while 
for the heavier atom n g~,2(S) < fp,2(S;Re). For H gN,2(S) 
from N 2, there is negligible difference from fr~,2(S;Re). 
For all the heavy pseudoatoms, gp,2(S) are essentially 
the same as fp,2(S;Re) so that successful decon- 
volution is accomplished. The hydrogen pseudoatom 
quadrupole scattering factors from FH are also shown 
in Fig. 4. The are closer to gH,2(S ) fn,2(S;Re) than 
ga,2(S). As for the dipole case, the anharmonic and 
non-rigid effects partly cancel. The maximum dif- 
ference of fn,2(S;Re) from the anharmonic, rigid 
model is 6% while that for the harmonic, rigid model is 
3 % at 0 .3  A-~ in sin 0/21,. 

Conclusion 

For the specialized study given here, a rigid pseudo- 
atom model can recover F(S;Re) from FBragg(S) 
provided that anharmonic contributions are included in 
the model. Non-rigid effects are found for the H 
pseudoatom and were as large as 6% for the quad- 
rupole scattering factor. In earlier work (Stewart, 1977) 
it was argued for the three-dimensional case that 
generalized X-ray scattering factors, which guarantee a 
large number of static charge properties, cannot in 
general be extracted from FBragg(S) in the zero 
temperature limit. In the present study, the zero-point 
vibration has been restricted to one dimension so that 
the convolution approximation can be appraised. If 
larger amplitudes of motion, such as libration, for these 
diatomics do not lead to appreciable deformation of the 
pseudoatoms, then it appears deconvolution can be 
achieved provided a correct nuclear distribution func- 
tion is used. The dramatic breakdown of rigid pseudo- 
atoms, displayed in Figs. 1 and 2, is of little con- 
sequence since (X22) for the diatomics considered in 
this work is rather small. Extension of the methods used 

here to a three-dimensional problem is straightforward, 
but will be tedious and difficult to execute. 

An analysis of non-rigid pseudoatoms in solids has 
been reported by March & Wilkins (1978). In this work 
the authors consider ( F . )  as an observable. In this case 
their ( F . )  is equation (8) here and is not restricted to 
the zero-temperature limit. These workers conclude 
that non-rigid effects are very small, but they do not 
consider anharmonic contributions to the model. 

Lastly, we point out that the convolution model in 
this work [equation (24)] should not be confused with 
the convolution approximation used by Coulson & 
Thomas (1971) in an analysis of the H 2 molecule. For 
the present study a pseudoatom is assumed to rigidly 
follow its associated nucleus. In the Coulson-Thomas 
study, the molecular charge-density at R e, Pmol(r;Re), is 
convoluted onto the square of the vibrational wave- 
function. Coulson & Thomas use an harmonic oscil- 
lator wavefunction, so that in their model, FBragg(S ) = 
Fmol(S;Re)exp(--S 2 t12(X22)/H). This is the same as 
equation (24) if anharmonic terms are neglected and if 
the diatomic molecule is homonuclear. 
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